3.254 \(\int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^6(c+d x) \, dx\)

Optimal. Leaf size=215 \[ \frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\frac {2 b^3 (5 A+7 C) \sin (c+d x)}{21 d (b \cos (c+d x))^{3/2}}+\frac {2 b^2 (5 A+7 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {2 b^4 B \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 b^2 B \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}-\frac {6 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

2/7*A*b^5*sin(d*x+c)/d/(b*cos(d*x+c))^(7/2)+2/5*b^4*B*sin(d*x+c)/d/(b*cos(d*x+c))^(5/2)+2/21*b^3*(5*A+7*C)*sin
(d*x+c)/d/(b*cos(d*x+c))^(3/2)+6/5*b^2*B*sin(d*x+c)/d/(b*cos(d*x+c))^(1/2)+2/21*b^2*(5*A+7*C)*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/d/(b*cos(d*x+c))^(1/2)-
6/5*b*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(
1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 215, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.195, Rules used = {16, 3021, 2748, 2636, 2640, 2639, 2642, 2641} \[ \frac {2 b^3 (5 A+7 C) \sin (c+d x)}{21 d (b \cos (c+d x))^{3/2}}+\frac {2 b^2 (5 A+7 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\frac {2 b^4 B \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 b^2 B \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}-\frac {6 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{5 d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]

[Out]

(-6*b*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(5*d*Sqrt[Cos[c + d*x]]) + (2*b^2*(5*A + 7*C)*Sqrt[Cos
[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(21*d*Sqrt[b*Cos[c + d*x]]) + (2*A*b^5*Sin[c + d*x])/(7*d*(b*Cos[c + d*x
])^(7/2)) + (2*b^4*B*Sin[c + d*x])/(5*d*(b*Cos[c + d*x])^(5/2)) + (2*b^3*(5*A + 7*C)*Sin[c + d*x])/(21*d*(b*Co
s[c + d*x])^(3/2)) + (6*b^2*B*Sin[c + d*x])/(5*d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx &=b^6 \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{9/2}} \, dx\\ &=\frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\frac {1}{7} \left (2 b^3\right ) \int \frac {\frac {7 b^2 B}{2}+\frac {1}{2} b^2 (5 A+7 C) \cos (c+d x)}{(b \cos (c+d x))^{7/2}} \, dx\\ &=\frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\left (b^5 B\right ) \int \frac {1}{(b \cos (c+d x))^{7/2}} \, dx+\frac {1}{7} \left (b^4 (5 A+7 C)\right ) \int \frac {1}{(b \cos (c+d x))^{5/2}} \, dx\\ &=\frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\frac {2 b^4 B \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 (5 A+7 C) \sin (c+d x)}{21 d (b \cos (c+d x))^{3/2}}+\frac {1}{5} \left (3 b^3 B\right ) \int \frac {1}{(b \cos (c+d x))^{3/2}} \, dx+\frac {1}{21} \left (b^2 (5 A+7 C)\right ) \int \frac {1}{\sqrt {b \cos (c+d x)}} \, dx\\ &=\frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\frac {2 b^4 B \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 (5 A+7 C) \sin (c+d x)}{21 d (b \cos (c+d x))^{3/2}}+\frac {6 b^2 B \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}-\frac {1}{5} (3 b B) \int \sqrt {b \cos (c+d x)} \, dx+\frac {\left (b^2 (5 A+7 C) \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{21 \sqrt {b \cos (c+d x)}}\\ &=\frac {2 b^2 (5 A+7 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\frac {2 b^4 B \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 (5 A+7 C) \sin (c+d x)}{21 d (b \cos (c+d x))^{3/2}}+\frac {6 b^2 B \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}-\frac {\left (3 b B \sqrt {b \cos (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 \sqrt {\cos (c+d x)}}\\ &=-\frac {6 b B \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)}}+\frac {2 b^2 (5 A+7 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d \sqrt {b \cos (c+d x)}}+\frac {2 A b^5 \sin (c+d x)}{7 d (b \cos (c+d x))^{7/2}}+\frac {2 b^4 B \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {2 b^3 (5 A+7 C) \sin (c+d x)}{21 d (b \cos (c+d x))^{3/2}}+\frac {6 b^2 B \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.76, size = 134, normalized size = 0.62 \[ \frac {\sec ^5(c+d x) (b \cos (c+d x))^{3/2} \left (2 \sin (c+d x) (10 (5 A+7 C) \cos (2 (c+d x))+110 A+273 B \cos (c+d x)+63 B \cos (3 (c+d x))+70 C)+40 (5 A+7 C) \cos ^{\frac {7}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-504 B \cos ^{\frac {7}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{420 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^6,x]

[Out]

((b*Cos[c + d*x])^(3/2)*Sec[c + d*x]^5*(-504*B*Cos[c + d*x]^(7/2)*EllipticE[(c + d*x)/2, 2] + 40*(5*A + 7*C)*C
os[c + d*x]^(7/2)*EllipticF[(c + d*x)/2, 2] + 2*(110*A + 70*C + 273*B*Cos[c + d*x] + 10*(5*A + 7*C)*Cos[2*(c +
 d*x)] + 63*B*Cos[3*(c + d*x)])*Sin[c + d*x]))/(420*d)

________________________________________________________________________________________

fricas [F]  time = 1.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C b \cos \left (d x + c\right )^{3} + B b \cos \left (d x + c\right )^{2} + A b \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{6}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)^3 + B*b*cos(d*x + c)^2 + A*b*cos(d*x + c))*sqrt(b*cos(d*x + c))*sec(d*x + c)^6, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \sec \left (d x + c\right )^{6}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^6, x)

________________________________________________________________________________________

maple [B]  time = 4.75, size = 727, normalized size = 3.38 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x)

[Out]

-2*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2*(A*(-1/56*cos(1/2*d*x+1/2*c)/b*(-b*(2*sin(1/2
*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^4-5/42*cos(1/2*d*x+1/2*c)/b*(-b*(2*sin(
1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)^2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d
*x+1/2*c),2^(1/2)))-1/5*B/b/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x
+1/2*c)^2-1)*(12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*sin(1/2*d*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*c
os(1/2*d*x+1/2*c)+3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c)
,2^(1/2))-8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4*b+sin(1/2*d*x+1/2*c)^2*b)^(1/2)+
C*(-1/6*cos(1/2*d*x+1/2*c)/b*(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(-1/2+cos(1/2*d*x+1/2*c)
^2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d
*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^
(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {3}{2}} \sec \left (d x + c\right )^{6}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^6, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right )}{{\cos \left (c+d\,x\right )}^6} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^6,x)

[Out]

int(((b*cos(c + d*x))^(3/2)*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^6, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**6,x)

[Out]

Timed out

________________________________________________________________________________________